

Assessment of Nitrogen Loading to Silver Bow and Blacktail Creeks Resulting from Sewage Contamination

2016 Butte Area One Small Restoration Project Proposal

Prepared for: Butte Natural Resource Damage Restoration Council (BNRC) 65 E. Broadway Butte, MT 59701

November 15, 2016

Butte Area One Small Project Proposal Assessment of Nitrogen Loading to Silver Bow and Blacktail Creeks Resulting from Sewage Contamination

Contact Information

Marcee Cameron, PMP Montana Economic Revitalization and Development Institute (MERDI) 65 East Broadway, Suite 5 Butte, MT 59701 406-494-7371 (office) 406-533-9196 (cell) marcee.cameron@mse-ta.com

Project Summary and Map

The Assessment of Nitrogen Loading to Silver Bow and Blacktail Creeks Resulting from Sewage Contamination project is a collaborative effort between MERDI (project sponsor) and the BSB Public Works Department to evaluate the influx of nitrogen loading to Silver Bow and Blacktail Creeks resulting from sewage contamination from septic systems, aging sewer lines and cross-connected sewer mains and storm drains located near the creeks. Project activities are expected to commence in the fall of 2017, with monitoring activities occurring into the summer of 2019. The funding request from BNRC for this project is \$48,448 with matching funds of \$119,281 from Butte-Silver Bow.

Project Goals and Objectives

The primary goals of the Assessment of Nitrogen Loading to Silver Bow and Blacktail Creeks Resulting from Sewage Contamination project are to evaluate the nitrogen (as nitrate) influx to these streams resulting from septic systems, aging sewer lines and cross-connected sewer mains and storm drains.

The project objectives pursued under this project include:

1. Identify septic systems located within the municipal sewer system and evaluate risk of nitrate contamination to either creek based upon the location of system.

Assessment of Nitrogen Loading to Silver Bow and Blacktail Creeks Resulting from Sewage Contamination

- Identify locations of cross-connected sewer mains and storm drains evaluate risk of nitrate contamination to either creek based upon the location of cross-connection and frequency of back-flow events.
- 3. Prepare a sampling plan that identifies analytes, sample sites, monitoring schedule and parameters that will classify sewage contamination.
- Identify neighborhoods or areas that pose the greatest possibility of nitrate contamination to either creek from leaking sewer lines based upon previous studies and the age of the sanitary infrastructure in place.
- Perform smoke tests on sewer lines to identify the extent of sewage leaks in neighborhoods or areas identified as posing a nitrate contamination risk to surface water in Blacktail and Silver Bow Creek.
- Identify and monitor ground- and surface-water wells most likely to register the impact of nitrate reductions as repairs and/or replacements are made.
- 7. Compile report.

Past studies indicate that nitrogen levels for the Clark Fork River Basin should be maintained at less than 0.35 mg/L to prevent nuisance algal growth. As a general guideline, a concentration of inorganic nitrogen greater than 0.30 mg/L in surface water is recognized as having the potential to cause eutrophication or algal growth. Because ground water is a major component of stream baseflow, elevated nitrate levels in Butte groundwater represents an ecological threat to both Blacktail and Silver Bow Creek. Nutrient enrichment can cause a host of negative ecological effects on these creeks, including loss of water clarity, proliferation of aquatic weeds, algae blooms, and drop-offs in dissolved oxygen (a critical factor for fish and other aquatic life). In the map on page 1 of this proposal, 57 % of the groundwater wells in the green highlighted area of Butte contained more than 2 mg/L nitrate and the median of 4.8 mg/L nitrate.

As early as 1914, a USGS hydrogeologic investigation of Butte's groundwater resources warned of the high potential for pollution by sewage and mine wastes due to poor soil characteristics in this area (high porosity, low organic matter). Again in 1969, 1970 and 1980 reports were published warning of potential threats to the ecosystem from septic systems, rating Butte's soils as "severely limited" for septic tank filter sand, making the use of septic systems in this area questionable. According to the Butte-Silver Bow County Growth Policy (2008 Update), there are approximately 200 miles of sewer lines in Butte serving 12,598 households. The 2010 U.S. Census lists 16,373 housing units in Butte, suggesting that roughly 23% of the housing units in Butte are served by septic systems or other wastewater systems. This agrees with 2002 EPA OWTS study that concludes that between 29% and 37% of Montana residents utilize septic systems. The same EPA study finds that although septic systems efficiently remove most wastewater contaminants, they typically contain 40-100 mg/L total nitrogen and remove only 10-20% of the nitrogen from the effluent.

The 2008 Butte-Silver Bow County Growth Policy states that "the community's sanitary system requires significant improvement. Currently, the system is being maintained through repair, but a long-term strategy for main trunk replacement is required in order to maintain capacity and provide room to grow." Much of Butte's original concrete & clay sewer system has been eroded by acidic mine water overflow resulting from antiquated cross-connections between sewer lines and storm drains. This erosion has resulted in complete disintegration of the sewer line in some areas. Testing utilizing a smoke machine and drone to identify areas in greatest need of repair or replacement will enable authorities to implement actions with immediate nitrate reduction benefits.

Assessment of Nitrogen Loading to Silver Bow and Blacktail Creeks Resulting from Sewage Contamination Septic systems are among the many sources of nutrients found in groundwater and surface water other major sources include fertilizers, livestock manure, municipal wastewater, and storm-water runoff. A 2004 report published by the Montana Bureau of Mines and Geology investigated the impact of high nitrate levels in groundwater on surface drainages and discovered many of the most contaminated groundwater wells occurred beneath the sewered area in East Butte as well as several unsewered subdivisions utilizing septic systems south of Butte. The analyses of nitrogen and oxygen isotopes in this study indicate animal or septic waste source for the nitrate rather than fertilizer. It would appear from this report that both leaking municipal sewage from an aging infrastructure and septic system use in the area contribute heavily to the nitrate influx to Silver Bow and Blacktail Creeks. This project intends to further isolate and identify areas of municipal sewage infiltration and rank each area based upon the risk posed to the ecological health of Silver Bow and Blacktail Creek.

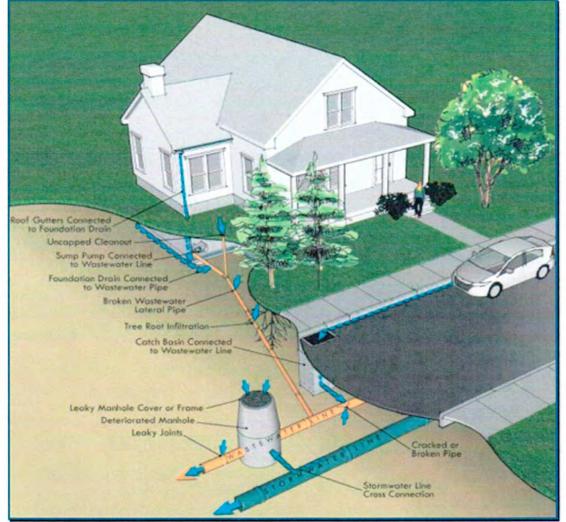
Project Benefits

Identifying the source of nitrate influx in Blacktail and Silver Bow Creek will allow governing bodies to focus infrastructure repair efforts on those areas identified as posing the highest risk to stream ecology.

Project Implementation

Phase I

- 1. Identify septic systems located within the municipal sewer system and evaluate risk of nitrate contamination to either creek based upon the location of system.
- Identify locations of cross-connected sewer mains and storm drains evaluate risk of nitrate contamination to either creek based upon the location of cross-connection and frequency of back-flow events.
- Identify neighborhoods or areas that pose the greatest possibility of nitrate contamination to either creek from leaking sewer lines based upon previous studies and the age of the sanitary infrastructure in place.


Phase II

- 1. Prepare a sampling plan that includes:
 - a. Identifying analytes of interest that would assist in identifying sewage contamination, including nitrate as nitrogen, total nitrogen, total phosphorus, total suspended solids and fecal coliform; Identifying other agencies that may already be monitoring these parameters and, if so, determining whether the results will be publicized and a timeline for publication;
 - b. Defining data quality objectives;
 - c. Locating optimum sampling locations and obtaining permission to sample, as necessary;
- 2. Perform baseline sampling and analysis.

Phase III

 Perform smoke tests on sewer lines to identify the extent of sewage leaks in neighborhoods or areas identified as posing a nitrate contamination risk to surface water in Blacktail and Silver Bow Creek. Property owners in areas where smoke testing will take place will be notified of testing, but permission is not required to perform the testing. Because this testing cannot be conducted during rainy periods or very windy conditions a general timeline of when testing will be conducted will be provided to property owners.

Assessment of Nitrogen Loading to Silver Bow and Blacktail Creeks Resulting from Sewage Contamination

The purpose of smoke testing is to find potential points of inflow and infiltration in the public portion of the sanitary sewer system that could lead to high flows during storms and snow melt events. Smoke testing can also help locate the following:

- · Points of groundwater or surface water intrusion into the sewer
- · Any cross connections between sanitary sewers and storm drains
- Defective sewer connections or leaks.

During smoke testing, field crews blow air and smoke into the sanitary sewer system in the street and monitor where smoke escapes the system. The smoke under pressure will fill the main line as well as any connections and then follow the path of any leak to the ground surface, quickly revealing the source of the problem. For instance, if smoke permeates up through a yard, it indicates breaks in the sewer line. Only enough force to overcome atmospheric pressure is required.

During testing, photo and video data will be recorded utilizing a drone equipped with a camera to document leaks in addition to information recorded on field sheets.

For each sewer main tested, a field log identifying each point of smoke exfiltration from:

Assessment of Nitrogen Loading to Silver Bow and Blacktail Creeks Resulting from Sewage Contamination

- ✓ Roof gutters.
- ✓ Sewer cleanouts
- ✓ Leakage in house laterals.
- ✓ Patio or area drains.
- ✓ Storm drain cross connections.
- ✓ Any other source not stated above
- ✓ Indicate if roof vents showed evidence of smoke or not.

Defects shall be logged as "private", "public owned", or "commercial". The points of exfiltration shall be referenced and dimensioned to permanent landmarks, GPS coordinates, and/or house or lot numbers.

A photograph of all leaks using a digital camera or approved substitute shall be included in the field log. Photographs of smoke evidence shall have a location indicated in the photograph using a heavy marker and heavy card stock and/or recorded on a DVD disk if specified. All photographs shall be clearly cross-referenced to the field log indicating the location of the leak. Photographs of smoke evidence shall have a location indicated in the photograph using a defect flag and be assigned a unique number.

- 2. Compile a Smoke Testing Report for the neighborhoods and areas included in this project. The report will include:
 - a. Scanned field forms;
 - An Excel table that includes a listing of all defects, defect number, description of defect, GPS coordinates of defect, digital photograph number corresponding to defect, testing date, inflow potential rating of the defect; and,
 - c. A Google Earth map with testing locations clearly identified.

Phase IV

- 1. Determine data validation & usability.
- 2. Compile report that will:
 - a. Include baseline nitrate results;
 - Identify those areas and systems that pose the greatest nitrate risk to both Silver Bow and Blacktail Creek based upon the results of previous studies, septic system evaluation, smoke testing and comparison to existing groundwater flow maps;
 - c. Evaluate alternative wastewater systems that more effectively treat nitrates than septic systems and associated costs of implementing those systems;
 - d. Identify and evaluate the costs associated with upgrades or repairs to leaking sewer lines;
 - e. Evaluate costs associated with the elimination of cross-connections of sewer mains and storm drains.

Phase V

Monitor ground- and surface-water wells most likely to register the impact of nitrate reductions as repairs and/or replacements are made.

- 1. Re-evaluate sampling plan from Phase II and update to include:
 - a. Inclusion of additional analytes of interest;
 - b. Re-defining data quality objectives, as necessary;

- c. Re-evaluating optimum sampling locations and obtaining permission to sample, as necessary;
- d. Determine monitoring schedule based upon repairs/upgrades made to sewer infrastructure and/or septic system replacement;
- 2. Perform ongoing sampling and analysis.
- 3. Report results of sampling and analysis.

Assessment of Nitrogen Loading to Silver Bow and Blacktail Creeks Resulting from Sewage Contamination

Project Schedule

The anticipated project schedule is estimated to take place over approximately 1.5 years.

Project Planner		ner	Period Highlight: 1 Actual K Complete Actual (beyond plan) % Complete (beyond plan)	
ACIMITY	PLAN START		Mennenti Noornimlene	Week
Activity IA: Sep Sys ID/Loc	1	2	0%	
Activity IB: X-Conn Loc	1	100	0%	
Activity IC: Area Ranking	4	8	0%	
Activity IIA: Samp Plan Prep	12	2	0%	
Activity IIB: Samp & Analy	14	4	0%	
Activity IIIA: Smoke Testin	13	21	0%	
Activity IIIB: Smoke Tst Rpt	29	10	0%	
Activity IVA: Data comp/eval	38	10	0%	
Activity IVB: R/R Cost eval	38	10	0%	
Activity IVC: Test Report	45	8	0%	
Activity VA: Monit Plan	52	3	0%	
Activity VB: Monit S&A	55	90	0%	

Assessment of Nitrogen Loading to Silver Bow and Blacktail Creeks Resulting from Sewage Contamination

Monitoring Activities

Project activities will be reported in quarterly reports as indicated in the following table.

Phase I:						
Activity #	Project measures	How will progress be measured	When will progress be measured	What tools/ resources are required to measure progress	Who is responsible for measuring progress	
IA) Identification of septic systems within	# septic systems located within municipal sewer system	Complete list of systems with	Quarterly	GPS Coordinates & Mapping	M.Cameron	
sewer system	location septic systems located within municipal sewer system	GPS coordinates and distance to SBC and BT Creeks				
IB) Identify locations of cross-connected sewer mains and	# cross connected sewer mains & storm drains located within municipal sewer system	Complete list of cross- connections	Ongoing (Risk - high: There are	GPS Coordinates & Mapping	M. Cameron	
storm drains	location cross connected sewer mains & storm drains located within municipal sewer system	with GPS coordinates and distance to SBC and BT Creeks	potentially thousands of cross- connections)			
IC) Identify	Evaluate previous studies	Creation of list of areas ranked	Quarterly	Internet and	M. Cameron	
neighborhoods or	Evaluate infrastructure upgrades			database search;		
areas that pose the greatest possibility of nitrate contamination to SBC or BT Creek	Rank areas from greatest to least risk of contamination	highest to lowest for nitrate contamination risk for further study		interviews		
Phase II:						
Activity #	Project measures	How will progress be measured	When will progress be measured	What tools/ resources are required to measure progress	Who is responsible fo measuring progress	
	Identify analytes of interest		Quarterly	Review	M.Cameron	

IIA) Prepare Sampling	Identify data quality objectives	Completed				
Plan	Identify sampling locations	Sampling Plan				
IIB) Sampling and	Perform sampling	Analytical	Ongoing	Laboratory; Field	M. Cameron	
Analysis	Analyze samples	Report	(Risk - low: No	and sampling		
	Validate analytical data		nitrate	instrumentation		
	Evaluate data as it relates to project		contamination) (Risk – moderate: inconclusive or invalid data)	and equipment; GPS		
Phase III:						
Activity #	Project measures	How will progress be measured	When will progress be measured	What tools/ resources are required to measure progress	Who is responsible for measuring progress	
IIIA) Perform Smoke	Notify residents/occupants	Field logs, progress reports,	Quarterly (Risk – high: test cannot be performed	Weekly meetings	M. Moore	
Tests	Notify emergency responders			and	1000	
	Traffic control			correspondence		
	Conduct testing	schedules	with high winds, rain, or wet ground)			
IIIB) Compile Report	List of defects	Report detailing severity	Quarterly	GPS Coordinates & Mapping	M. Moore	
	Locations of defects		(Risk - low: no			
	Inflow Potential Ratings		defects) (Risk -			
	Map of defects with ranking	ranking of defects	moderate: most defects rank severe)			
Phase IV:						
Activity #	Project measures		When will progress be measured	What tools/ resources are required to measure progress	Who is responsible for measuring progress	
IVA) Evaluate data	Septic systems	Estimate to	Quarterly	Internet and	M.Cameron	
and information	Leaking sewage lines	completion		database search;	M. Moore	
collected during	Previous studies	1 - C - C - C - C - C - C - C - C - C -		interviews		
Phases I-III	Baseline nitrate data					
	Smoke testing results					

	Groundwater flow maps		-	I down ad any d	M.Cameron	
IVB) Evaluate replacement/repair costs	Replacement cost of septic systems with systems capable of greater nitrate reduction	Estimate to completion	Ongoing (Risk: There are potentially	Internet and database search; quotes, cost	M. Moore	
	Repair costs to sewer infrastructure posing greatest threat		thousands of cross-	estimating		
	Replacement cost of sewer infrastructure posing greatest threat	connections)				
	Costs associated with the elimination of cross-connections in high-contamination risk areas					
IVC) Report	Compile report including findings from IVA and IVB.	Progress reports and draft updates	Quarterly		M.Cameron M. Moore	
Phase V:						
Activity #	Project measures	How will progress be measured	When will progress be measured	What tools/ resources are required to measure progress	Who is responsible fo measuring progress	
VA) Revise Sampling	Re-evaluate analytes of interest	Completed revised	Quarterly	Review	M.Cameron	
Plan	Re-evaluate data quality objectives			Charles and the second		
	Re-evaluate sampling locations	Sampling Plan		and the second		
VB) Sampling and	Perform sampling	Analytical	Ongoing	Laboratory; Field	M. Cameron	
Analysis	Analyze samples	Report	(Risk - moderate:	and sampling		
r indi joio	Validate data		No nitrate	instrumentation		
	Evaluate data as it relates to project		reduction)(Risk – moderate: no repairs)	and equipment; GPS		

Assessment of Nitrogen Loading to Silver Bow and Blacktail Creeks Resulting from Sewage Contamination

Project Budget

An estimated project budget is provided below. Butte-Silver Bow Public Works department will provide labor and materials to perform smoke testing in the area outlined in green in the map in the Project Summary section. This section currently consists of over 400,000 feet of sewer line; however, Phase I of this project will be focused in a smaller footprint nearer to the creeks. Hourly estimates below are based upon a BSB 4 man crew being able to complete 3600 feet of smoke testing and a 6 hour work day, resulting in an estimate to completion of 5.5 months for 400,000 feet of sewer line. Because this area of Butte is not currently the focus of BSB's smoke testing, the cost of drone services will be covered by the project.

The total amount requested for this project is \$48,448 with a total match of \$119,281.

Personnel Name	Category	Bil	ling Rate	Hours	Cost	Role
Marcee Cameron	Project Manager, Chemist	\$	120.00	120	\$ 14,400.00	Project Management, Field Sampling Plan, Perform Sampling, Quarterly & Final Reports
Kitrina Wilkins	Chemist	\$	80.00	80	\$ 6,400.00	Review Field Sampling Plan, Perform Sampling, Data Compilation and Review Final Report
Tyler Rye	Field Tech	\$	55.00	80	\$ 4,400.00	Field Sampling
Miriam King	Administrative	\$	80.00	8	\$ 640.00	Administrative Tasks
Matt Moore/MERDI		\$	140.00	60	\$ 8,400.00	Reporting
Matt Moore/BSB	Project Manager, PE	\$	110.00	60	\$ 6,600.00	Project Management, Project Engineer, Work Permits, Notifications, Scheduling
4 Man Crew (per day)	Supervisor & 3 man crew	\$	1,200.00	90	\$ 108,000.00	Supervision of Field Crew, Safety, Recording Field Data, traffic control, blower operator, line walking, laborer (Est 6 hr days, 3600 feet/day for 5.5 months total 400,000 feet sewer line)
	Certified Drone Operation,	\$	70.00	60	\$ 4,200.00	Camera Operator; 4 wing drone with real-time video and hover capabilities
Hayes Novich	Contracted Services	\$	85.00	60	\$ 5,100.00	Pilot; 4 wing drone with real-time video and hover capabilities
		L	abor Subtotal	468	\$ 43,540.00	
			Labor Match	420	\$ 114,600.00	

Item	Category	ry Unit Cost		Units	Total Cost			
Lab Analysis	Direct Cost	\$	89.25	55	\$	4,908.75	Nitrate as Nitrogen, Total Nitrogen, Total Phosphorus, Total Suspended Solids, Fecal Coliform	
Lab Analysis	Match Cost MSE	\$	15.75	55	\$	866.25	Discounted laboratory costs	
1750-4500 cfm blower	Match Cost BSB	\$	2,320.00	1	\$	2,320.00	Smoke Testing (4000 cfm @ 4.0 static pressure)	
Superior Smoke Fluid	Match Cost BSB	\$	1,495.00	1	\$	1,495.00	Smoke Testing (\$1495/55 gal)	
		-	100000	Subtotal	\$	4,908.75		
				MSE Match	\$	866.25		
				BSB Match	\$	3,815.00		
				Total Request:	\$	48,448.75		
				Total Match:	\$	119,281.25		

Butte Area One Small Project Proposal Assessment of Nitrogen Loading to Silver Bow and Blacktail Creeks Resulting from Sewage Contamination

Drone Aircraft Photography Estimate

Hazer Live ESTIMATE / 11152016 Hayes Novich 124 Main Street Butte, MT 59701 406.599.7286

MERDI
65 E. Broadway, Suite 5
Butte, MT 59701

ESTIMATED COST \$9,300.00

Assessment of Nitrogen Loading to Silver Bow and Blacktail Creeks Resulting from Sewage Contamination Project

Photographic and real-time video documentation of sanitary sewer system smoke testing using DJI Inspire 1 Pro multi-rotor with 4K video & 12 MP stills with >1 mile radio range and GPS-based flight control & stabilization system.

Item Description	Estimated Time	Estimated Cost
Camera Operator @ \$70/hour	60 hours	\$4,200.00
Certified Drone Pilot @ \$85/hour	60 hours	\$5,100.00
	Subtotal	\$9,300.00
	Discount - 0%	\$0.00
	TOTAL	\$9,300.00

Prompt payment is appreciated. Secured payment is required for service after or before drone aircraft photography service is completed unless otherwise agreed in writing. Thank you.

Signatures

Your Name

Date

Assessment of Nitrogen Loading to Silver Bow and Blacktail Creeks Resulting from Sewage Contamination

Laboratory Services Quote

MSE Lab Services P.O. Box 4078 Butte, MT 59702 TEL: (406) 494-7334 FAX: (406) 494-7320

15-Nov-16 QUOTATION for ANALYTICAL SERVICES

Quote: 540

Company:	MERDI				Submit	ed By:		
Contact: Address:	Marcee Cameron 65 E. Broadway, Suite 5 Butte, MT 59701			Sara				
Phone:	(406) 533-6700 Fax	c :	Quote Expires:				2/13/2018	
Project: TAT: QC Level:	BNRC BAO Small Project 15 working days	Proposal						
Test Name		Matrix	Test	Remarks	# Samp	Unit Price	Test Tota	
Nitrate+Nitri	te by ION CHROMATOGRAPH	Aqueous	E300.0		55	\$15.00	\$825.00	
FECAL COL	I SM9222-D	Aqueous	A9222D		55	\$25.00	\$1,375.00	
TOTAL PHO	OSPHOROUS - E365.3	Aqueous	E365.3		55	\$25.00	\$1,375.00	
TOTAL PER	SULFATE NITROGEN	Aqueous	A4500-NO3-		55	\$25.00	\$1,375.00	
TOTAL SUS	SPENDED SOLIDS	Aqueous	A2540D		55	\$15.00	\$825.00	
					Mis	b total: sc: scount:	\$5,775.00 \$0.00 15.00%	
					то	TAL:	\$4,908.75	
Misc Comm	ents:							

Comments:

1 of 1