Clark Fork River Remediation and Restoration Overview

By Brian Bartkowiak & Tom Mostad

Clark Fork River Red Water

Contaminants of Concern

- Cadmium
- Copper
- Arsenic
- Lead
- Zinc

Warm Springs Ponds

CERCLA aka "Superfund" Law

Remediation

- Cleanup of hazardous substances to protective levels
 - Human health
 - Environment

Restoration

- Picks up where remediation leaves off
 - Return to baseline
 - Natural resources

Clark Fork River Lawsuit Background

- 1983 Montana v. ARCO lawsuit
- 2008 Settlement of Clark Fork River Claim
- State received:
 - ~\$93 Million Remediation
 - ~\$27 Million Restoration
 - ~\$120 Million Total

Clark Fork River Restoration Activities

Restoration - Restore, Replace or Acquire the equivalent of injured natural resources covered under the lawsuit

Terrestrial

Aquatic

Additional Restoration

- Aquatics Monitoring
- Tributary Prioritization
- Channel Reconstruction
- Riparian Fencing
- Fish Screens
- Irrigation Improvements
- Riparian Planting
- Conservation Easements
- Land Acquisitions
- Project Development

Working Together

Reach A, Phase 1 Design

- Reach A, Phase 1 Upper most section of the Clark Fork River (below Warm Spring Ponds)
- Preliminary Design Plan available on DEQ's website:
 - http://www.deq.mt.gov/feds uperfund/cfr.mcpx
- Design Review Team Meeting, Spring, 2012
- Advertise and award contract for cleanup late 2012

Overview of Preliminary Design

- Remove contaminated materials from the floodplain and rebuild with uncontaminated material, creating an inset flood plain.
- Develop secondary channels, wetlands, and point bars in the inset floodplain.
- Provide varying substrates, develop microtopography, and add roughness elements (woody debris).
- Preserve appropriately vegetated streambanks and rebuild where necessary using bioengineering techniques.
- Plant new vegetation in the niches where it will have a high likelihood of survival.

Tailings Removal Design

Summary of Excavation Volumes for Phase 1

Excavation Area	53.5 Acres
Tailings Removal Volume	268,400 CY
Average Tailings Depth	3.1 ft.
Over Excavation Volume (0.5 ft)	41,600 CY
Total Excavation	311,000 CY
Average Removal Depth	3.6 ft.

Reach A Phase 1 Removal Area

Geomorphology

Type 1 Bank Treatment – Brush Trench

- DEQ cleaned up residential yard in and around Deer Lodge in 2010 & 2011
- ~13,000 cubic yards of contaminated material removed from residential yards

During Cleanup

Completed

During Cleanup

Completed

During Cleanup

Completed

- The Trestle Area is located in downtown Deer Lodge, MT
- ~ 8,000 cubic yards of contaminated material was removed from this area
- ~ 1,000 feet of streambanks reconstructed
- Seeding and planting of over 3,000 trees and shrubs

Building Log Crib Wall

Finished Log Crib Wall

Removing Contamination

Re vegetating

Before Cleanup

After Cleanup

Clark Fork River Reach A, Phase 1 Streambanks Pilot Project

Map of Demo Area

Two Types of Bank Treatments

- Type 2 Treatment
- Modified Type 2 (B) Treatment
- Goals:
 - Test the constructability of the streambanks
 - Make modification to the streambank designs (if necessary)
 - Assist in writing the specifications for the streambanks
 - Better determine areas that are applicable to either type
 - Determine Short-term success

Type 2 (B) Bank Treatment

Modified Type 2 (B)

Pre-Construction

Contamination Removal Complete

Single Lift Construction

Staking Coir Fabric

First Willow Cuttings in Place

Willows Capped with Topsoil

Second Row of Willows and Plants

Watering and seeding

Limited Browse Protection

Contamination Removal

Contamination Removed

Willow Cuttings

Backfilled

Limited Plant Protection

Lessons Learned

- It is possible to construct both types of banks
- Coir "wraps" are not necessary on all streambanks
- Vegetation can be preserved on the face of the streambanks while successfully constructing bank treatment behind
- Turbidity monitoring during construction showed very little increase in turbidity (sediment loading)

Clark Fork River Field Trip Preview

Questions?

