MILLTOWN RESTORATION Lessons Learned

Symposium on Riparian Restoration in a Contaminated Environment April 2012

Presentation Overview

- Summarize the project history
- Describe the 2010 and 2011 floods
- Review project performance
- Discuss lessons learned
- Reflect on initial project uncertainty
- Identify next steps and future expectations

History of Impacts

REMOVE
THE DECEMBENTREMOVE
THE DECEMBENTREMOV

and the second second

REMOVE THE DAM.

Help clean up Milltown Reservoir.

RESTORE THE RIVER. www.clarkfork.org

REMOVE MISSOULA. RESTORE THE VALLEY. Help clean up Montana.

Project Goals

- Goal I maintain water quality.
- Goal 2 restore a naturally functioning system that is appropriate for the geomorphic setting and site constraints.
- Goal 3 provide preferred habitat for native fish and wildlife.
- Goal 4 establish floodplain conditions that will allow the development of wetlands and diverse native plant communities.
- Goal 5 provide visual and aesthetic values consistent with restoring the natural condition.
- Goal 6 provide safe recreational opportunities compatible with the other goals and objectives.

Integrated Remediation & Restoration

Grading Plan

Restoration Plan for the Clark Fork River and Blackfoot River near Milltown Dam

Features

🥏 Main Channel

Secondary Channel

1

— CFR 3B STUDY REACH

DEER CREEK

90

BLACKFOOT

CARK FORK RIVER

FLOW

MILLTOWN DAM

FLOW

- Point Bar
- 🔀 Wetland
- Bankfull Floodplain (bankfull elevation to 2 ft. above bankfull)
- Low Terrace (2 to 3 ft. above bankfull)
- High Terrace (greater than 3 ft. above bankfull*)
- Existing Floodplain Surface (to remain undisturbed)
- Deer Creek Tributary (pending final design)
- Existing Spring
- Existing Secondary Channel

*Final elevation to be determined based on final $\operatorname{cut}/\operatorname{fill}$ quantities.

Multi-stage Hydraulic Geometry

Geomorphic features tied to river stage Baseflow channel ~ 1/3 of bankfull channel for fish passage Active channel contains bankfull discharge Low terraces contain 10-20 year flood

Riverbed Reconstruction

- Engineered riffles
- Grade controls
- Maintain floodplain connection

Example Construction Drawing

Large Wood Structures

LWD Function

- Bank protection
- Emulate naturally occurring stable accumulations of wood debris
- Flow steering
- Pool development
- Energy dissipation

Bioengineering Bank Construction

Vegetated Soil Lift Function

- Revegetation technique
- Short term bank protection
- Reduce erosion
- Promote vegetation
- Adds habitat

Microtopography Grading

- Roughness
- Large organic debris
- Sediment trapping
- Seed recruitment
- Flood attenuation

2009 Construction

2010 Runoff ~ 3,200 cfs Bankfull

2010 Runoff ~ 6,000 cfs

April 2011

May 2011

June 2011

Photo: Gary Matson

-

14

Peak flow 2011

August 2011

CONTRACTOR OF THE PARTY OF

November 2011

Maintenance Evaluation Process

A. Document visual inspections of changes and identify potential maintenance sites.

- B. Hypothesize causes of changes, trends and risk in the context of project objectives.
- C. Confirm/reject hypotheses with data and analyses, if needed.
- D.Assign risk to potential maintenance sites based on judgment and/or performance criteria.
- E. Solicit input from peer reviewers for critical uncertainties.

F. Identify maintenance alternatives and priorities.

Initial Uncertainty & Peer Review

- Elevation of pre-dam floodplain
- Alluvium characteristics of pre-dam floodplain
- Performance of floodplain transitions
- Performance of side channels
- Stability of Entrance Reach and upstream reach
- Sediment transport characteristics
- Confluence hydraulics
- Overall project performance??

Performance Criteria

- Goal 2 restore a naturally functioning system that is appropriate for the geomorphic setting and site constraints.
- Objective reconstruct a meandering channel and broad floodplain that gradually transitions to an confined channel with a narrow, sloping floodplain.
- Performance Criteria range of natural variability; +/-20% of design metrics.
- **Design Criteria** morphology is similar to reference conditions.
- Metrics channel and floodplain geometry.

Timeframes for Expectations

Short Term Expectations (0-15 Years)	Long Term Expectations (15+Years)
Structures control channel form, which in turn, dictates lateral and vertical channel stability	Vegetation dictates lateral channel stability. Channel armoring processes dictate vertical stability
Vegetation provides stability on floodplain surface and along streambanks	Vegetation communities are established and provide habitat and other riparian/wetland functions
Structures are stable	Structures decompose & become buried
Habitat enhanced by bank stabilization and grade control structures	Habitat created by bed forms & vegetation
Bank erosion rates are low	Bank erosion rates are low
Natural processes are maintained	Natural processes govern

Pre-dam Floodplain

Stumps found at varying elevations Alluvium characteristics variable Unable to identify pre-dam channel

Groundwater correlated to river surface water

Performance of Floodplain Transitions

Structure Performance

Discharge exceeded design criteria Bioengineering and toe damage Large Woody Debris structures intact Engineered riffles damaged, but held grade

Designing for Failure

- Select hydraulic criteria from flood events less than 100-yr
- Design bank toe protection at depths less than scour
- Use biodegradable fabrics, plant material and wood
- Specify round versus angular rock
- Allow bed mobility up to D₈₄ size class
- Integrate side channels
- Maintain floodplain connection at less than Q_2

Side Channel Performance

Multiple design configurations Discharge exceeded design criteria Variable performance Entrance damage and debris buildup Conveyed more flow than expected New side channels formed Provided relief valves for main stem Modified design criteria for maintenance

Side Channel Performance

Confluence Hydraulics

Confluence Hydraulics

Stability of Entrance Reach

- Sediment transport discontinuity
- Avulsion
- Lateral migration
- Floodplain connection
- Habitat is adequate
- Wetlands present
- Navigable for recreation

Conclusions

- An inter-disciplinary, coordinated & collaborative approach is critical at every stage of analysis, design & implementation
- Peer review is essential
- Establish expectations up front
- Adaptive management needs to occur at the planning, design, & implementation stages
- More time needed to evaluate overall success
- Current performance trends are positive

Next Steps

- Final implementation phase currently underway
- Re-development parks, trails and river access
- Open for recreation in near future
- Continued monitoring and maintenance

Acknowledgements

- State of Montana Natural Resource Damage Program
- Montana Fish, Wildlife and Parks
- Confederated Salish and Kootenai Tribes
- Montana Department of Environmental Quality
- U.S. Environmental Protection Agency
- WestWater Consultants, Inc.
- Geum Environmental Consultants, Inc.
- Envirocon, Inc.