APPENDIX E.

Earth Volumetric Studio Animations

As part of the development of this Parrot Performance Monitoring Program (PMP) Conceptual Site Model (CSM), video animations using the Earth Volumetric Studio (EVS) software program were generated. The visualizations provide a three-dimensional illustration of subsurface lithology, water levels, and analytical chemistry. Multiple video animations have been created and are available using the links provided below.

Bedrock Topography

Animation includes the interpreted weathered bedrock and bedrock surface based on existing PMP well logs. Wells and screened intervals are shown, along with weathered bedrock and bedrock. <u>Bedrock Topography Animation</u>

Time Series Upper Alluvial Unit (UAU) Groundwater Elevations

Animation shows time series groundwater elevations from wells in the Upper Alluvial Unit. The time period is November 2017 to January 2019. UAU Water Levels

Time Series Middle Alluvial Unit (MAU) Groundwater Elevations

Animation shows time series groundwater elevations from wells in the Middle Alluvial Unit. The time period is November 2017 to January 2019. MAU Water Levels

Time Series Lower Alluvial Unit (UAU) Groundwater Elevations

Animation shows time series groundwater elevations from wells in the Lower Alluvial Unit. The time period is November 2017 to January 2019. LAU Water Levels

Groundwater Copper Concentration with Lithology

Animation shows October 2018 copper concentrations starting from the high concentration to low concentration, down to 0.0036mg/l. Wells and screened intervals are shown, along with site geology.

Groundwater Copper Concentration with Lithology

Groundwater Zinc Concentration with Lithology

Animation shows October 2018 zinc concentrations starting from the high concentration to low concentration, down to 0.0036mg/l. Wells and screened intervals are shown, along with site geology.

Groundwater Zinc Concentration with Lithology

Time Series Groundwater Copper Concentration

Animation shows time series copper concentrations for data from all wells (PMP and BPSOU/BMFOU) within the upper BAO corridor. Wells and screened intervals are shown. The time period is April 2010 to January 2019.

Time Series Groundwater Copper Concentration

Time Series Groundwater Zinc Concentration

Animation shows time series zinc concentrations for data from all wells (PMP and BPSOU/BMFOU) within the upper BAO corridor. Wells and screened intervals are shown. The time period is April 2010 to January 2019.

Time Series Groundwater Zinc Concentration

APPENDIX F.

MEMORANDUM

To: Elizabeth Erickson

From: Michael Nicklin

Date: 1/22/20

Re: Mass Balance Summary – Parrot Tailings – Cross-section B-B'

A quantitative assessment of metal transport through cross-section B-B' was performed per your request. This technical memorandum summarizes the information used and the method employed in completing the quantitative assessment.

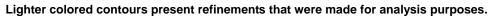
The primary sources of information used include the following:

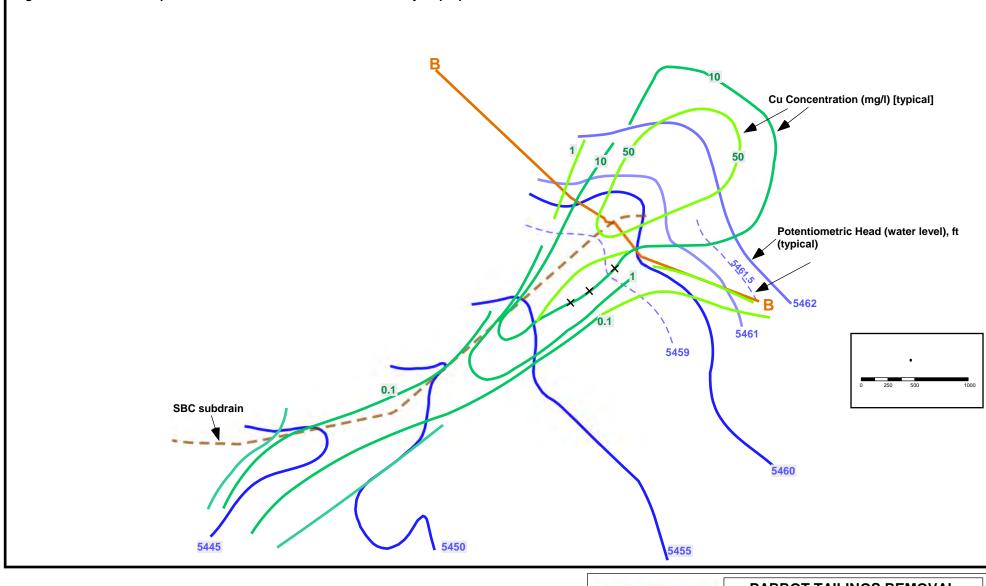
- Montana Bureau of Mines and Geology Report (2010): Aquifer Test Evaluation Conducted on the Middle Gravel Unit of the Alluvial Aquifer in Upper Metro Storm Drain Area, Butte, MT (Open File Report Number 592) [MBMG-2010];
- Potentiometric surface contours developed by WET;
- Metal concentration contours of July 2019 developed by WET; and
- The chemistry and water level data files contained in the project Access database.

In order to quantify the mass of analytes flowing through cross-section B-B' it is necessary to know the rate of groundwater flow and the concentration of that groundwater flow. Darcy's Law was employed in order to quantify that flow. The form of that law was established as follows:

$\mathbf{Q} = \mathbf{T} \times \mathbf{W} \times \mathbf{dh/dl}.$

Q is the aquifer discharge through a given aquifer's width (**W**). Transmissivity (**T**) was defined using the pumping test summary set forth in Table 3 from the MBMG-2010 report. Table 1 provides a condensed summary of the MBMG table. Table 1 shows that the overall average **T** is 9,128 ft2/d which was selected for the mass balance evaluation conducted for the middle aquifer units. The upper unit was assumed to possess a **T** value of 440 ft²/d which is the product of 55 ft²/d assuming an average thickness of 8 feet based upon information provided in the "AR Report".


The **dh/dl** was defined using localized gradients near cross-section B-B'. Given that the flow direction and hydraulic gradient were variable over the length of cross-section B-B', the potentiometric surface was subdivided into discrete segments (stream tubes) that conveniently


matched concentration contours. In effect, a series of Darcy equations were developed to summarize the flow over the portion of Section B-B' exhibiting contaminant plume contours. Each stream tube had its own unique hydraulic gradient and width.

The specific data utilized to assign the stream tubes were the water levels (and potentiometric maps) and chemistry data for Copper (Cu) and Zinc (Zn) (and concentration contour maps) from July 2018. In some instances, additional potentiometric and concentration contours were added in the immediate vicinity of Section B-B' to provide greater resolution for quantification purposes. See Figure 1 for an example showing copper concentrations and water levels which provide a starting point for the mass balance analysis.

Attachment A provides a detailed example of the procedure applied to Cu for the middle aquifer. Figures A-1 and A-2 provide a summary of the sequence employed to quantify the Cu mass transport through cross-section B-B'. The same procedure was repeated to quantify Cu and Zn for the middle and upper aquifers at this section.

Table 2 provides a summary of the mass balance results for Cu and Zn, middle and upper aquifers.

	PARROT TA	ILINGS REMOVAL	
Water & Environmental TECHNOLOGIES	Copper Concentration and Water Level Contours July 2018		
	Job#: NRDPM07	FIGURE 1	
	Date: 8/29/2019	FIGURE I	

Table 1Summary of Transmissivity/Hydraulic Conductivity *Middle Aquifer Unit

Well	Average Tranmissivity, feet2/day	Average K, feet/day
GS-41D	9,560	637
GS-42D	7,250	483
AMW-1D	1,790	120
MSD-1B	7,170	478
MSD-2B	15,500	1,000
MSD-3	13,500	902
Overall Average	9,128	603

* Information adapted from Table 3 of MBMG-2010.

Aquifer	Flow, gpm *	Analyte	Mass, Ibs/day	Mass, tons/year
Middle	272	Copper	59.1	10.8
Upper	14	Copper	7.2	1.3
		Total	66.3	12.1
Middle	268	Zinc	196.0	35.8
Upper	27	Zinc	11.4	2.1
		Total	207.4	37.9

Table 2Summary of Mass Balance AnalysisMiddle and Upper Aquifer Units

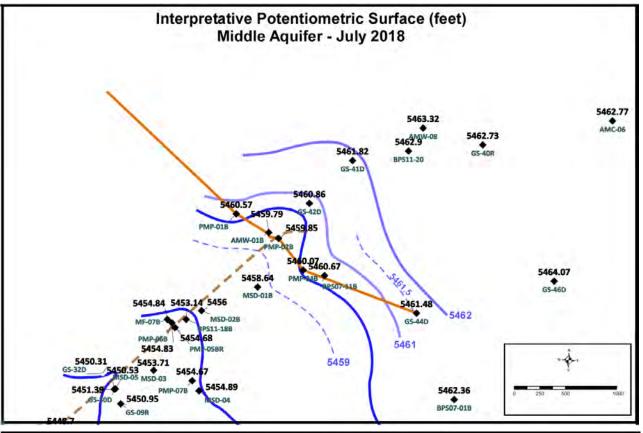
* Different flow rates are observed for each analysis as flow computations were limited to plume width boundaries that were assessed for mass balance.

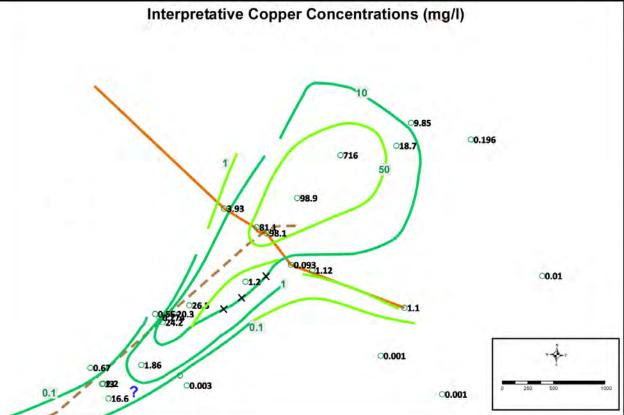
Rate of flow by stream tube (uses Darcy's Law or $Q = T \times W \times (drop/length)$ or TxWxdh/dl Mass transport for stream tube is flow multiplied by analyte concentration

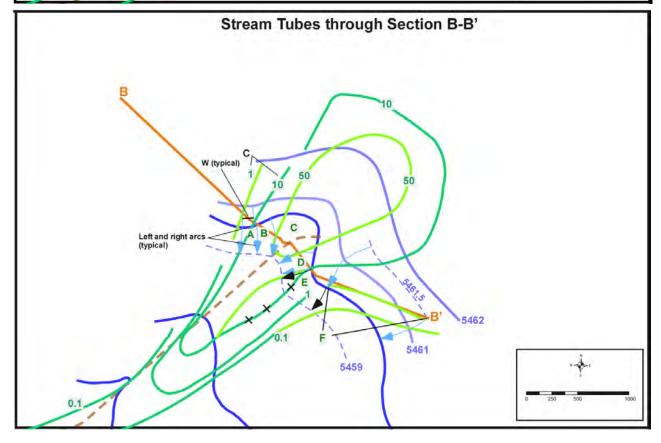
-	1 6		T CO/I		0 (10/1	0		
	L, ft	W, ft	T, ft2/d	Gradient	Q, ft3/d	Q, gpm	See below	
Flow A	470.5	181	9128	0.0043	7.02E+03	36.48	_	
	Rate	Conversion	Flow					
		gpm to I/d	l/d	Avg C, mg/L	mg/d	kg/d	lbs/d	lbs/year
Transport A	gpm 36.48	5450.99	198863.4	5.5	1.09E+06	<u> </u>	2.41	878.88
Transport A	30.40	5450.99	190003.4	0.0	1.092+00	1.09	2.41	0/0.00
	Tube A	Average	Gradient	Average				
	Length, ft	Drop	ft/ft	Concentr.				
Left Arc	475	•		1				
Right Arc	466			10				
Width Entry *	110			10		* at x-section		
	110				-			
	470.5	2	0.004251	5.5				
					-			
	L, ft	W, ft	T, ft2/d	Gradient	Q, ft3/d	Q, gpm		
Flow B	333	172	9128	0.0030	4.71E+03	24.49		
	Rate	Conversion	Flow					
	gpm	gpm to I/d	l/d	Avg C, mg/L	mg/d	kg/d	lbs/d	lbs/year
Transport B	24.49	5450.99	133502.7	<u>30</u>	4.01E+06	4.01	8.81	3218.28
Папэрон В	24.45	0400.00	100002.1	00	4.012.00	1.01	0.01	0210.20
	Tube B	Average	Gradient	Average				
	Length, ft	Drop	ft/ft	Concentr.				
Left Arc	276	1		10				
Right Arc	390	1		50				
Width Entry	172							
					-			
	333	1	0.003003	30				

	L, ft	W, ft	T, ft2/d	Gradient	Q, ft3/d	Q, gpm		
Flow C	379.5	277	9128	0.0026	6.66E+03	34.610		
	Rate	Conversion						
	gpm	gpm to I/d	l/d	Avg C, mg/L	mg/d	kg/d	lbs/d	lbs/year
Transport C	34.61	5450.99	188657.5	89.6	1.69E+07	16.90	37.19	13582.97
	Tube C	Average	Gradient	Average				
	Length, ft	Drop	ft/ft	Concentr.				
Left Arc	390				Local samp	le data used a	as opposed	to contours.
Right Arc	369	1		98.1				
Width Entry	277				-			
	379.5	1	0.002635	89.6				
		141 61	T ((a))		0 (10/1			
	L, ft	W, ft	T, ft2/d	Gradient	Q, ft3/d	Q, gpm		
Flow D	338.5	178	9128	0.0030	4.80E+03	24.93		
	Rate	Conversion	Flow					
	gpm	gpm to I/d	l/d	Avg C, mg/L	mg/d	kg/d	lbs/d	lbs/year
Transport D	24.93	5450.99	135915	30	4.08E+06	4.08	8.97	3276.43
		Average	Gradient	Average				
	Tube D	-	ft/ft	Concentr.				
	Length, ft							
Left Arc	369	1		50				
Right Arc	308	1		10				
Width Entry	178							
	338.5	1	0.002954	30				

	L, ft	W, ft	T, ft2/d	Gradient	Q, ft3/d	Q, gpm		
Flow E	293.5	209	9128	0.0030	5.64E+03	29.28		
	Rate	Conversion						
	gpm	gpm to I/d	l/d	Avg C, mg/L	mg/d	kg/d	lbs/d	lbs/year
Transport E	29.28	5450.99	159585.6	0.6065	9.68E+04	0.10	0.21	77.77
		Auerogo	Cradiant					
	Tube F	0	Gradient	Average				
	Tube F Length, ft	Drop	ft/ft	Concentr.				
Left Arc	310	1		0.093	Local sampl	le data used a	as opposed	to contours.
Right Arc	277			1.12				
Width Entry	209				_			
	293.5	1	0.002954	0.6065				
	L, ft	W, ft	T, ft2/d	Gradient	Q, ft3/d	Q, gpm		
Flow F	559.5	875	9128	0.0030	2.36E+04	122.57		
	Rate	Conversion	Flow					
	gpm	gpm to I/d	l/d	Avg C, mg/L	mg/d	kg/d	lbs/d	lbs/year
Transport E	122.57	5450.99	668121.4	1	6.68E+05	0.67	1.47	536.87
		Average	Gradient	Average				
	Tube F	•	ft/ft	Concentr.				
	Length, ft	•						
Left Arc	609	1.5		1				
Right Arc	510	1.5		1				
Width Entry	875							
	559.5	1.5	0.002954	1				

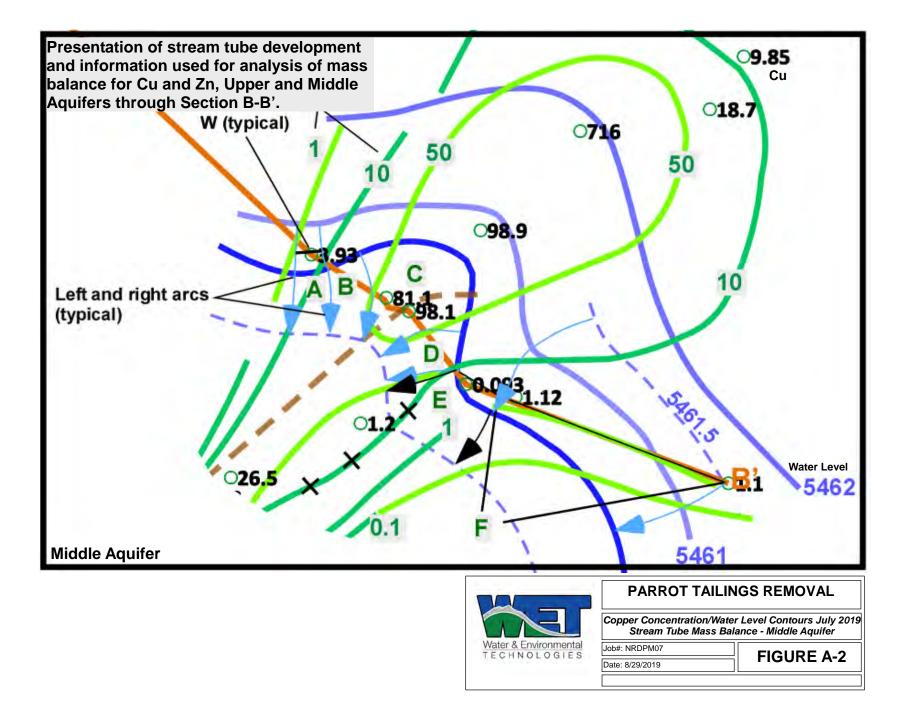

Т


Page A-3


1

Total Flow	272 gpm
Total Cu	59.1 lbs/day
Total Cu	21,571 lbs/yr
Total Cu	10.8 tons/yr

Step 1 was to provide additional resolution of the hydraulic gradient in the vicinity of the cross-section B-B'.


Step 2 was to provide additional resolution of the copper concentrations in the vicinity of the cross-section B-B'.

Step 3 was to combine the water level contours with the copper concentrations to create stream lines/tubes. Stream tubes were defined so that each boundary coincided with the intersection of the plume contour and Section B-B'. Note that flow and associated transport were assumed to be parallel the stream tube. The hydraulic gradients of each tube were assumed to be the average of the gradient of the right and left arc (streamline). The stream tube width for quantifying the mass transport was defined at the crosssection as shown below. The average concentration was assumed to be the average of the two bounding plume contours. Note that if sufficient local chemical data were present near the cross-section and between plume contours (two or more data points) that information superseded the average of the two plume contours.

Step 3 was repeated for each stream tube present.

See Figure A-2 for additional procedure information.

Water & Environmental TECHNOLOGIES	PARROT TAILIN	NGS REMOVAL	
	Copper Concentration/Water Level Contours July 2019 Stream Tube Development - Middle Aquifer		
	Job#: NRDPM07	FIGURE A-1	
	Date: 8/29/2019	FIGURE A-1	

