Natural Resource Damage Program

Symposium on Riparian Restoration in a Contaminated Environment

The Evolution of Channel and Floodplain Restoration Design Approaches
Based on Lessons Learned Over the Past Few Decades

John Muhlfeld Principal Hydrologist River Design Group, Inc.

Presentation Outline

- Channel Design
- Floodplain Design
- Streambank Design

Approaches and Lessons Learned

- Grave Creek, Montana
- Granite Creek, Idaho
- Clark Fork River, Montana
- Whychus Creek, Oregon
- Middle Fork John Day, Oregon
- Jocko River, Montana
- Planning and Expectations

Channel Design and Lessons Learned

- Modeled Hydraulic Roughness vs. Field Conditions
- Loss of Streambed Armor Layer
- Need for Grade Control Structures
- Multiple Failure Mechanisms

Failure Modes and Geomorphic Response

__ Rock Displacement and Flanking

Channel Incision and Floodplain Disconnection

Deformable Grade Control Structures

Matrix Supported Constructed River Bed

Clark Fork River at the Former Milltown Dam Site – Reach CFR 2

Matrix Supported Constructed River Bed

Pre Flow Activation - Whychus Creek, Oregon

Matrix Supported Constructed River Bed

Post Flow Activation - Whychus Creek, Oregon

Floodplain Design and Lessons Learned

- Link vegetation community types to geomorphic features
- Promote recruitment rather than containerized planting
- Provide soil types to support vegetation types
- Include weed management in maintenance program

Complex Floodplain Grading

Swales

Micro-topography

- Add roughness to raw floodplain surfaces
- Create micro-topography to promote natural recruitment
- Place coarse woody debris to augment organic content

Middle Fork John Day River Phase 1 2011 100-Year R.I. Flood

Swales

Macro-topography

Terraces Where Appropriate.....

- Define channel migration zone
- Landform control between valley and stream type transitions
- Support upland vegetation and provide LWD recruitment

Side Channels Design and Lessons Learned

Clark Fork River 2011 38-Year R.I. Flood

Flood Stage

- Distribute flow, sediment and nutrients across floodplain surfaces
- Provide flood and ice jam relief
- Off-channel aquatic habitat during floods

Side Channel Performance and Lessons Learned

- Entrance angles critical in relation to higher stage flow paths
- Relation to upstream and downstream side channels and risk

- Activated at less than bankfull flow
- Provided hydrologic recharge to floodplain surfaces during baseflow conditions
- Facilitated natural revegetation of raw floodplain surfaces

Jocko River near Arlee Phase 1 and 2

Confederated Salish and Kootenai Tribes

Jocko River Phase 1 June 2005 20-Year Flood

Jocko River Phase 1 Streambank Revegetation Structures

- Toe scour and settling of base lift → Toe Material Design (D84)
- Hydraulic "piping" of soil backfill → Coir Log
- Cutting Survival → Timing of collection and installation

Jocko River Phase 1 June 2005 25-Year Post Flood Observations

Jocko River Phase 1 June 2005 25-Year Flood Post Flood Observations

- Planform Lower radius meanders experienced deposition in the thalweg and scour across point bars
- Profile Abrupt transitions between features caused features to adjust.
- Cross section Average channel depth increased (slight incision)
- Structures Channel vertical stability compromised as discrete grade control structures deformed (e.g. dislodged rock)

Jocko River Phase 2 Design Modifications

- Planform Increased meander radius to at least 3.5 times channel width and increased meander arc length.
- Profile Increased length of transitions between riffle and pool features. Glides increased to 2 times Wbkf.
- Cross section Width:depth ratio increased from 25 to 30 to reduce shear stress

Jocko River Phase 2 Design Modifications

Streambanks

- Super elevated outer banks
- Coarse wood in bank toes

Floodplain

- Side channels
- Microtopography
- Set surfaces below bankfull

Grade Control

- Eliminated vanes and weirs
- Constructed riffles

Jocko River Phase 2

Jocko River Phase 2

Sequencing and Layout of Structures

- Geomorphic criteria drives structure spacing, length & depth
- Consider multi-stage hydraulic response (including flood paths)
- Short-term stability vs. long-term deformability

Vegetated Wood and Brush Fascine Bank Restoration Structure Passive Margins

Designing for 'Deformability Over Time'

- Select hydraulic criteria from flood events less than 100-yr
- Design bank toe protection at depths less than scour
- Use biodegradable fabrics, plant material and wood
- Specify round versus angular rock if appropriate
- Allow bed mobility up to D₈₄ size class
- Integrate side channels
- \square Maintain floodplain connection at less than Q_2

Project Planning

Establish Clear Goals and Objectives

Goal 1 - restore a naturally functioning system that is appropriate for the geomorphic setting and site constraints.

Objective - reconstruct a meandering channel and broad floodplain that gradually transitions to an confined channel with a narrow, sloping floodplain.

- Performance Criteria Range of natural variability (+/- 20%)
- Design Criteria Morphology is similar to reference conditions
- Uncertainty and Expectations Short and long-term
- Integrate multiple disciplines
 Hydrologist → Geomorphologist → Engineer → Biologists → Contractor

Set Timelines for Expectations

Short Term Expectations (0-15 Years)	Long Term Expectations (15+ Years)
Structures control channel form, which in turn, dictates lateral and vertical channel stability	Vegetation dictates lateral channel stability. Channel armoring processes dictate vertical stability
Vegetation provides stability on floodplain surface and along streambanks	Vegetation communities are established and provide habitat and other riparian/wetland functions
Structures are stable	Structures decompose & become buried
Habitat enhanced by bank stabilization and grade control structures	Habitat created by bedforms & vegetation
Bank erosion rates are low	Bank erosion rates are low
Natural processes are maintained	Natural processes govern

Technological Advancements

LiDAR data sets, 3-D Multi Dimensional Models

Technological Advancements

Hydraulic Modeling

Acknowledgements

The Changing the course of conservation. Freshwater Trust®

Geum Environmental Consulting, Inc.

