Monitoring fishery response to remediation and restoration in the Upper Clark Fork

Pat Saffel, FWP

Purpose

- Evaluate program effectiveness
 - Document successes
 - Explain failures
- Recommend future direction
- Provide information to the public

In other words...

- It's cool!
 - Big ecosystem level
 - Ambitious lots of work
 - Making a difference
 - Making history
- …and a challenge

Spatial and temporal scales

Spatial

- Project
- Watershed
- Basin
- Biological (sub pops, species, communities, ecosystems)
- Remediation and/or restoration effects

Temporal

- Immediate, years and decades
- A mix
 - -Culvert removed but generation(s) for fishery response

A couple, simple scenarios

BOTH CONSTANT, PROJECT INCREASE

BOTH INCREASE, PROJECT MORE SO

Ideal vs. real world

IDEAL

REALITY

- Data is plentiful and precise
- Impact has defined time and space
- Response is solely affected by impact
- Controls are similar to impact in all aspects except event

Ideal vs. real world

IDEAL

- Data is plentiful and precise
- Impact has defined time and space
- Response is solely affected by impact
- Controls are similar to impact in all aspects except event

REALITY

- Data is limited and variable
- Impact happens over time and varies through space
- Response is affected by many factors (fish move)
- Controls have their own, unique issues

The "not so ideal but ending happily" caged fish story

- Survival in tributaries (controls) was less than many mainstem (impacted) sites
- Tributaries have their own "issues"
- Mortality was more fish specific than site specific

- Metals burden provided a characterization we couldn't make with survival - we have a baseline to measure benefits of cleanup.

- Metals burden provided a characterization we couldn't make with survival - we have a baseline to measure benefits of cleanup
- Live vs. dead burdens suggested a predictor of survival
 - if so, a basin-specific relationship that links metals burden directly to young trout survival is possible

Model	Cu P-value	Zn P-value	McFadden R2	ROC	AIC
2.848 - 0.253*Cu	< 0.001		0.275	0.811	304.939
5.602 - 0.027*Zn		< 0.001	0.256	0.829	313.152
5.907 - 0.200*Cu - 0.018*Zn	< 0.001	< 0.001	0.36	0.863	271.979

- Temperature was not included in the model by the analysis

Caged fish results

- Baseline metals burden data can be used to measure benefits of cleanup
- A site-specific model that links metals burden to survival of young trout (the Achilles heel of the Clark Fork)
- High water temperature was not influential in predicting survival of trout
 - May reduce burden needed to affect survival during summer

Future monitoring: dealing with the less than ideal

- Start collecting data NOW!
 - Efficient, cost-effective sampling
- Strategic sampling
 - Priority Streams
 - Anticipate projects
 - Anticipate controlling for change
- Coordinate between disciplines and with project managers

Program goals and monitoring response

- Restore mainstem fisheries
 - Better survival, more natives
- Enhance tributary populations
 - Improve use of mainstem
 - Larger systems are fisheries, too
- Conserve remaining native trout populations
 - Get some use of mainstem
- Evaluate effects of construction
 - Fish abundance and survival

Primary Methods

- Population surveys (Electrofishing)
- Otolith microchemistry
 - Survival
 - Origin
- Caged fish
- Genetics and tagging
- Trapping

Conclusion

- Biological assessments can be messy, but yield good information
- Strategic sampling and early data collection helps
- Information sharing and coordination is essential
- Monitoring is necessary to maximize resource benefits and document this historical event

Acknowledgements

- DEQ: caged fish and mainstem fish pops
- NRD: trib prioritization
- FWP personnel
 - Nathan Cook
 - Brad Liermann
 - Jason Lindstrom
 - Trevor Selch
- DEQ, NRD & FWP: future monitoring